Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: The example of Bulgaria

Beatriz Martínez-López a,b, *, Benjamin Ivorra c, Angel Manuel Ramos c, Eduardo Fernández-Carrían c, Tsviatko Alexandrov d, José Manuel Sánchez-Vizcaino a

a VISAVET Center and Animal Health Department, Veterinary School, University Complutense of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
b IREC (CSIC-ULCM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
c Bulgarian Group, Applied Mathematics Department, University Complutense of Madrid, Spain
d Bulgarian Food Safety Agency, Blvd. Pencho Slaveikov 15A, Sofia, Bulgaria

ARTICLE INFO

Article history:
Received 30 October 2012
Received in revised form 17 January 2013
Accepted 30 January 2013

Keywords:
Spatial and stochastic simulation model
Classical swine fever
Backyard pigs
Bulgaria

ABSTRACT

The study presented here is one of the very first aimed at exploring the potential spread of classical swine fever (CSF) from backyard pigs to other domestic pigs. Specifically, we used a spatial stochastic spread model, called Be-FAST, to evaluate the potential spread of CSF virus (CSFV) in Bulgaria, which holds a large number of backyards (96% of the total number of pig farms) and is one of the very few countries for which backyard pigs and farm counts are available. The model revealed that, despite backyard pigs being very likely to become infected, infections from backyard pigs to other domestic pigs were rare. In general, the magnitude and duration of the CSF simulated epidemics were small, with a median [95% PI] number of infected farms per epidemic of 1 [1.4] and a median [95% PI] duration of the epidemic of 44 [17,101] days. CSFV transmission occurs primarily (81.16%) due to indirect contacts (i.e. vehicles, people and local spread) whereas detection of infected premises was mainly (69%) associated with the observation of clinical signs on farm rather than with implementation of tracing or zoning.

Methods and results of this study may support the implementation of risk-based strategies more cost-effectively to prevent, control and, ultimately, eradicate CSF from Bulgaria. The model may also be easily adapted to other countries in which the backyard system is predominant. It can also be used to simulate other similar diseases such as African swine fever.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Classical swine fever (CSF) is a highly contagious viral disease of pigs and wild boars that causes severe economic impact due to the trade restrictions imposed on the affected countries. Considering that the pig sector in the European Union (EU) maintains a high level of production and exports, contributing more than €32 billion per year to

Please cite this article in press as: Martínez-López, B., et al., Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: The example of Bulgaria, Vet. Microbiol. (2013), http://dx.doi.org/10.1016/j.vetmic.2013.01.045
the EU’s economy (Food Chain Evaluation Consortium, 2011), the eradication of CSFV has become a chief priority in the EU.

Yearly, the EU invests a substantial amount of money in the co-financing of CSF monitoring and eradication programs in several Member States (MS). As an example, the EU funding for the eradication of CSF from 2005 to 2009 amounted to €17 million (Food Chain Evaluation Consortium, 2011). This financial effort has resulted in a significant reduction of the CSF outbreaks in most of the countries, with the practical eradication of the disease in domestic pig populations. Nevertheless, sporadic CSF outbreaks still occur in many European countries. For example, from January 2005 to July 2012 a total of 351 outbreaks were notified in Europe, affecting countries such as Hungary (142 outbreaks), Croatia (130), Russia (49), Bulgaria (11), Germany (8), Lithuania (6), Slovakia (3) and Serbia (2) (WAHID, 2012). Most of these CSF outbreaks have been associated either with low biosecurity premises (mainly backyard pigs) and/or with wild boar.

Certainly, backyard pigs have been recognized as key players for disease (not only CSF) occurrence (Food Chain Evaluation Consortium, 2011; Lupulovic et al., 2010; Pozio et al., 2010); however, there are no studies addressing and quantifying their epidemiological role in the CSFV endemicity and/or in the potential CSFV transmission to other domestic pigs. This lack of studies is, most likely, associated with the scarceness of complete and reliable information about backyard pig demographics and contact patterns, which are key factors to estimate disease transmission in countries/regions where backyard pig production is predominant. Certainly, a better understanding of the role that backyard pigs have in CSFV transmission will enhance the CSF eradication program, helping the implementation of better surveillance and control strategies. This will not only provide more cost-effective prevention and control of CSF but, ultimately, achieve CSF eradication in the EU and other territories.

In this study, we used detailed information of backyard pig population and contact patterns from Bulgaria, which is one of the EU countries in which backyard pig production predominates (96% of backyard farms), to evaluate the potential evolution of CSFV epidemics in Bulgaria. Our aim was, particularly, to assess CSFV spread from backyard pigs to other domestic pigs by using a stochastic and spatial disease spread model called Be-FAST (Martínez-López et al., 2010, 2012; Ivorra et al., 2013). Methods and results presented here may be useful to guide risk-based interventions not only in Bulgaria, but also in other similar countries where backyard pig production is predominant.

2. Materials and methods

2.1. Definitions and data

Bulgarian pig farms are categorized in five types based on (i) the level of biosecurity, (ii) the trade patterns permitted and (iii) the farm size (Alexandrov et al., 2011). The first type of farm is referred to as “Industrial”, which is characterized by high levels of biosecurity, no restrictions on pig trade and large number of pigs on farm. “Family farm type A” is the second type, similar to industrial farms in permitted trading but, usually, with a smaller farm size and lower level of biosecurity (i.e. medium instead of high). “Family farm type B” is the third type characterized by poor or no biosecurity, smaller farm size and pig trade only allowed to other non-industrial pig farms. The fourth type is the “Backyard” pig farm, which has poor or no biosecurity, a very small farm size (up to 5 pigs and no sows) and in which pig trade is not allowed (pigs are only for self-consumption). Finally, the last type of farm is the “East-Balkan” pig herd, which is managed traditionally (i.e. free-range pigs fed in open grass areas), has poor or no biosecurity level, usually has medium to small farm sizes and in which trade is only allowed to other East-Balkan pig herds.

Data used in this study consisted of detailed pig demographics and trade for each type of pig farm, which was provided by the Bulgarian Food Safety Agency (http://bah.gov.bg/en/). Specifically, the number of farms per municipality and per type of farm (i.e. industrial, family type A, family type B, backyard and East Balkan) and the number of pigs per farm during 2010 were available. Because the specific location of farms was not detailed, we used ArcGIS9.3 (ESRI®) to assign latitude and longitude coordinates for each farm within each municipality (Fig. 1). Pig movement records were also obtained and used to simulate CSFV spread by direct contacts. Specifically, the farm of origin, the farm of destination, the day of shipment and the number of pigs shipped from January to October 2010 were used (Fig. 2).

2.2. The model

The spread of CSFV in Bulgaria both by direct contacts (i.e. pig movements) and by indirect contacts (i.e. vehicles, people and local spread) was modeled by adjusting a previously described and validated spatial and stochastic model for CSF, referred to as Be-FAST (Martínez-López et al., 2010, 2012; Ivorra et al., 2013). Note that local spread was defined here as the indirect CSFV transmission by airborne spread or fomites from an infected farm to farms in close proximity (<2 km) (Martínez-López et al., 2010; Karsten et al., 2005a,b). Briefly, the Be-FAST model combines a discrete time stochastic ‘Susceptible’-‘Infected’ model (SI) to simulate the daily CSFV spread within a particular farm with an Individual Based model (in which farms are considered as individuals and are assumed to be in either ‘Susceptible’, ‘Infected’, ‘Infectious’ or ‘Clinical signs’ state) to simulate the CSFV spread between farms. At the beginning of a simulation all farms are in the ‘Susceptible’ state except one randomly selected farm, which is assumed to have one infected pig and which is classified as an ‘Infectious’ farm. After this initial infection, the within- and between- farm transmission processes occur throughout the study region considering the parameterization of the model, the spatial location and demographics of farms and the contact patterns among them. Moreover, when the first farm is detected as CSFV-infected, a daily process for simulating the control measures (such as zoning, movement restriction, tracing
and stamping-out) is also implemented. Each simulation finishes when, at the end of a simulated day, the CSFV epidemic has disappeared.

In this study, model parameters were adapted to the Bulgarian conditions by using information from an expert opinion elicitation conducted on 31 May 2012 in Hannover and from the expert knowledge of Bulgarian Veterinary Authorities. Values of parameters that have changed from those described for the original model are detailed in Table 1.

A total of 5000 different epidemics was run assuming different randomly selected index cases. Specifically, for the first 1000 epidemics the index case was assumed to be a randomly selected backyard pig farm; for the next 1000 epidemics the index case was assumed to be a family type B farm; for the next 1000 epidemics, a family type A farm; for the next 1000 epidemics, an industrial farm and; for the last 1000 epidemics an East Balkan pig herd. As a result, 5000 different epidemics, originated in 5000 random and different farms, were run during, approximately, 92 h.

Fig. 1. Spatial distribution of the different types of pig farms in Bulgaria during 2010.

Fig. 2. Pig contact network from January to October 2010 in Bulgaria. Red and blue points represent farms of origin and destination, respectively. Shipments of pigs are represented by using green lines.
Table 1
Parameters different to the default ones implemented in the Be-FAST model (see Martínez-López et al., 2010, 2012; Ivorra et al., 2013) used to simulate the CSFV spread in Bulgaria.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution or value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within-farm transmission</td>
<td>$\beta_A = 0.656; \beta_B = 0.600, \beta_B = 0.500, \beta_{AB} = 0.050; \beta_{BA} = 0.050.$</td>
</tr>
<tr>
<td>Probability of infection</td>
<td>$I = \text{Bernoulli}[0.0065]$ by contacts with vehicles $A = \text{Bernoulli}[0.0075]$ transporting products $B = \text{Bernoulli}[0.01]$ $BY = \text{Bernoulli}[0.02]$ $EB = \text{Bernoulli}[0.02]$</td>
</tr>
<tr>
<td>Probability of infection</td>
<td>$I = \text{Bernoulli}[0.0068]$ by contact with people $A = \text{Bernoulli}[0.008]$ $B = \text{Bernoulli}[0.01]$ $BY = \text{Bernoulli}[0.034]$ $EB = \text{Bernoulli}[0.034]$</td>
</tr>
<tr>
<td>Probability of restriction of movements outside the control and surveillance zones</td>
<td>$I = \text{Bernoulli}[0.40]$ $A = \text{Bernoulli}[0.35]$ $B = \text{Bernoulli}[0.30]$ $BY = \text{Bernoulli}[0.10]$ $EB = \text{Bernoulli}[0.10]$</td>
</tr>
<tr>
<td>Probability of tracing an animal movement</td>
<td>$I = \text{Bernoulli}[0.09]$ $A = \text{Bernoulli}[0.95]$ $B = \text{Bernoulli}[0.90]$ $BY = \text{Bernoulli}[0.30]$ $EB = \text{Bernoulli}[0.30]$</td>
</tr>
<tr>
<td>Probability of tracing a people movement</td>
<td>$I = \text{Bernoulli}[0.67]$ $A = \text{Bernoulli}[0.60]$ $B = \text{Bernoulli}[0.50]$ $BY = \text{Bernoulli}[0.10]$ $EB = \text{Bernoulli}[0.10]$</td>
</tr>
<tr>
<td>Probability of tracing a vehicle transporting products</td>
<td>$I = \text{Bernoulli}[0.05]$ $A = \text{Bernoulli}[0.09]$ $B = \text{Bernoulli}[0.80]$ $BY = \text{Bernoulli}[0.20]$ $EB = \text{Bernoulli}[0.20]$</td>
</tr>
</tbody>
</table>

I: industrial; A: family type A; B: family type B; BY: backyard; EB: East Balkan.

Magnitude, duration and transmission patterns of the simulated CSF epidemics in Bulgaria were summarized using the median value, the mean value and the 95% probability intervals (PI). Values for the effective reproduction ratio of a farm i ($R_0(i)$), which was defined as the number of times that farm i infects another farm in a 'Susceptible' state considering all the simulations; and the risk of CSFV introduction into a farm i (Risk_i), which was defined as the number of times that farm i becomes infected considering all the simulations were also calculated (Anderson and May, 1979, 1991). Raster maps for the R and Risk values were generated with the Kernel density function implemented in ArcGIS 9.3 (ESRI®) and using the Jenks optimization method (i.e. Natural Breaks) for mapping the risk categories (Jenks, 1967). Epidemic curves were also produced using Microsoft Office Excel 2010.

3. Results

A total of 85% of the 5000 simulations resulted in a non spread of the CSFV (i.e. 85% of the intentionally infected index farms did not further spread the disease). Specifically, from those 1000 simulations whose index farm was a backyard type, only 73 resulted in further spread of the disease. This number, when index cases were industrial, family type A, family type B and East Balkan pig herds were 387, 116, 86 and 105, respectively.

From those simulations that did result in CSFV spread, the median and mean [95% PI] number of infected farms

![Epidemic curves](https://example.com/epidemic-curves.png)
per epidemic was 1 and 2 [1,4], respectively. The median and mean [95% PI] number of infected pigs were 2 and 371 [1,4477], respectively. The median and mean [95% PI] duration of the epidemic were 44 and 52 [17,101] days, respectively. The median and mean [95% PI] number of infected Municipalities per epidemic were 1 and 1 [1,3] respectively.

Simulations in which the index cases were industrial farms resulted in the largest epidemics (Fig. 3a). Conversely, the magnitude and duration of the epidemics when index cases were backyards, family type A, family type B or East-Balkan pig herds were much smaller (Fig. 3b).

The routes of infection in simulations in which the index cases were backyards were, primarily, vehicles (50.6%) and people (43.7%) and, in a very small proportion, local spread (5.7%). Contrarily, routes of infection in simulations in which the index cases were industrial farms were, mainly, local spread (61.8%) followed by animal movements (17.3%), vehicles (12.8%) and people (8.1%). Routes of infection for simulations in which the index cases were family type A farms were local spread (28.9%), vehicles (28.8%), people (23.7%) and movement of animals (18.6%) and for simulations in which the index case were family type B farms were vehicles (49.5%), people (42.1%) and local spread (8.4%). Finally, routes of infection for simulations in which the index case were East-Balkan pig herds were vehicles (45.5%), people (41.3%) and local spread (13.2%).

Detection of CSF outbreaks occurred, primarily (69%), by observation of clinical signs whereas zoning and tracing accounted for 21% and 10% of the detections, respectively.

A detailed description of the transmission patterns after 5000 simulations is presented in Table 2. Most (95%) of the infected premises were backyards whereas most (56%) of the infectious premises were industrial farms. Industrial farms became infected very rarely (2.3%) and the source of infection was always another industrial farm. Family type B farms were also rarely infected (2.6%), but the source of infection was more diverse, including industrial, family type A and backyard farms. In the case of backyard farms, industrial farms were the main source of infection (52%) but all other types of farms also contributed to the CSFV infection in backyards.

In general, the median [95% PI] of the R and Risk values for a pig farm in Bulgaria after 5000 simulated CSFV epidemics were 1 [1,18] and 1 [1,5,4]. Detailed values of R and Risk per type of farm are presented in Table 3. As expected, industrial farms had the highest potential to infect other farms (R = 7.5) although they were concentrating a much lower risk of becoming infected (Risk = 2). The spatial distribution of the risk of CSFV infection, which was very similar to the spatial distribution of R (not shown), is presented in Fig. 4.

4. Discussion

The study presented here is one of the very first to describe quantitatively the potential spread of CSFV from backyard pig premises to other domestic pig farms. Specifically, we used an already verified and validated (Martínez-López et al., 2012; Ivorra et al., 2013) spatial and stochastic simulation model, called Be-FAST, to simulate the within- and between farm CSFV-transmission in Bulgaria, in which backyard pig production is predominant. It is important to note that the presence of both very large (i.e. industrial) and very small (i.e. backyard and family type B) pig farms in Bulgaria required the incorporation of both the within- and between- farm transmission processes in order realistically to estimate a CSFV epidemic in this country. Among other reasons, this was an important motivation for selection of the Be-FAST model to be used and adapted for the simulation of CSFV spread in Bulgaria. Unfortunately, most of the published models (see for example Karsten et al., 2005a,b; Jalvingh et al., 1999) do not incorporate the within-farm transmission component and, as a result, they will be greatly overestimate the magnitude and duration of a potential CSF epidemic in Bulgaria. Furthermore, Be-FAST allows the possibility of easily incorporating the network of contacts among farms, which allows a more realistic simulation of the real trade patterns in the study region.

Table 2
Transmission patterns indicated by using the percentage of infections regarding the 5000 simulations of Be-FAST from (i.e. infectious) and to (i.e. infected) the different types of farms.

<table>
<thead>
<tr>
<th>Infectious farm type</th>
<th>Infected farm type</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industrial</td>
<td>Family type A</td>
<td>Family type B</td>
<td>Backyard</td>
<td>East Balkan</td>
</tr>
<tr>
<td>Industrial</td>
<td>2.3%</td>
<td>2.1%</td>
<td>51.7%</td>
<td></td>
<td>56.1%</td>
</tr>
<tr>
<td>Family type A</td>
<td>0.3%</td>
<td>12.1%</td>
<td>7.9%</td>
<td></td>
<td>12.4%</td>
</tr>
<tr>
<td>Family type B</td>
<td>0.2%</td>
<td>13.0%</td>
<td>10.4%</td>
<td></td>
<td>13.2%</td>
</tr>
<tr>
<td>Backyard</td>
<td>2.3%</td>
<td>2.6%</td>
<td>94.1%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>East Balkan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Median [95% probability intervals] for the R and Risk values obtained after 5000 runs of the Be-FAST model in Bulgaria.

<table>
<thead>
<tr>
<th>R</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>7.5 [1.43]</td>
</tr>
<tr>
<td>Family type A</td>
<td>1 [1.21]</td>
</tr>
<tr>
<td>Family type B</td>
<td>1 [1.2]</td>
</tr>
<tr>
<td>Backyard</td>
<td>1 [1.2]</td>
</tr>
<tr>
<td>East Balkan</td>
<td>1 [1.5]</td>
</tr>
</tbody>
</table>
In general, the CSFV simulations produced small and short epidemics, which agreed with the historical magnitude and duration of the CSFV epidemics in Bulgaria in the last 10 years (WAHID, 2012). Results also revealed that CSFV-infection from backyard pigs to other domestic pigs was generally rare, despite backyard pigs being at high risk of becoming infected (95% of the infected farms were backyards) (Table 2). In fact, backyard farms were only able to infect other backyards (13% of infections) or, on very few occasions (0.2% of infections) family type B farms. This low potential for CSF transmission from backyards to other domestic pigs may be explained, at least in part, by the combination of (i) the pig trade restrictions imposed on backyard farms in Bulgaria (ii) the use of backyard pigs and pork primarily for self-consumption and, (iii) the low number of pigs in individual backyard farms, which also limits the potential CSFV-airborne or local spread to nearby farms. These socio-cultural practices and characteristics of backyard pig production in Bulgaria, seem to guarantee that, even if a backyard farm becomes infected with CSFV, it will be unlikely to spread the disease further to other domestic pig premises. However, it is important to highlight that the definition of backyard pigs and backyard farms varies considerably among different countries within the European Union and, therefore, the epidemiological role of backyard pigs in other territories may be not the same as in Bulgaria. As a consequence, the results presented here are valid only for Bulgaria and should not be extrapolated to other countries without previous adjustments of the model to incorporate the specific characteristics and trade patterns between backyard farms and other type of domestic pig farms in the country of interest.

Interestingly, the model suggested that indirect contacts were crucial to the spread of CSFV in Bulgaria. In this regard, fomites, particularly vehicles and people, were the most important routes of CSFV transmission in low biosecurity premises (i.e. backyard, family type B and East-Balkan herds). In family type A farms, local spread, vehicles and people were equally important as source of infection whereas local spread and animal movements were the most important routes of transmission in industrial farms. Risk and R values and raster maps also revealed that there are certain areas presenting higher risk for CSFV-introduction (Fig. 4) and/or spread (not shown). These results suggest, firstly, that measures and interventions aimed to increase biosecurity on farm or to reduce the presence of contaminated fomites (such as disinfection of vehicles, the use of showers on farms, etc.) should significantly reduce the risk of CSFV-spread in Bulgaria and, secondly, that those interventions may be particularly focused on those areas/farms at higher risk of introducing/spreading the disease. Nevertheless, we suggest that further investigations should be conducted to evaluate more deeply the role that indirect contacts, particularly in family type B farms, and the incidence of practices such as swill feeding, may have in CSFV transmission between backyard farms and industrial/family type A farms. These investigations will certainly help to reduce the uncertainty of the parameters related with CSFV transmission through indirect contacts, improving the reliability of model results.

To sum up, simulation studies conducted here were useful for (i) identifying high risk areas for CSFV spread (Fig. 4), (ii) evaluating the specific transmission patterns between different types of farms, including backyards, in Bulgaria (Table 2), (iii) assessing the main routes of transmission for the different types of farms and, (iv) estimating the potential risk of introduction or spread of CSFV into specific types of premises by the use of R and Risk

Please cite this article in press as: Martínez-López, B., et al., Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: The example of Bulgaria. Vet. Microbiol. (2013), http://dx.doi.org/10.1016/j.vetmic.2013.01.045
values, respectively (Table 3). Further simulations may be run to compare different CSFV-surveillance and control strategies which may guide the implementation of future risk-based surveillance methods.

Conflict of interest statement

Authors declare that they have no competing interests

Acknowledgements

The authors would like to acknowledge the provision of data and support of the Bulgarian Food Safety Agency. This work has been funded by the European Project CSFV_go-DIVA (KBBE-227003), the Spanish Ministry of Science and Innovation under projects MTM2008-04621, MTM2011-22658; the “Comunidad de Madrid” and “European Social Fund” through project S2009/PPQ-1551. Beatriz Martínez-López currently holds a Juan de la Cierva contract (JCI-2011-10724). A.M. Ramos has also been funded by “Fundación Caja Madrid”.

References

